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Objective

Performance a simple analysis of model parameters which could be
influenced by control strategies. Also we want to establish a
framework to formulate the inverse problem associated to estimate
interval-valued parameters by considering the uncertainty to obtain
robust solutions for epidemiological models.



Method of sum of squares

Nonlinear System _| Equilibrium Define the degree of
&= f(z) Points Lyapunov function (even)

Y
_ Define the vector of
monomials z

Express the Lyapunov function
and its orbital derivative
as a quadratic form

Solve the SDP



Sum of squares

Theorem (Parrilo, 2000, 2003)

A multivariate polynomial p(x) in n variables and of degree 2d is a
sum of squares if and only if there exists a positive semidefinite
matrix @ such that

p(x) =2"Qz,

where z is the vector of monomials of degree up to d

T d
z :[1)X15X27"')Xn)X1X27”')Xn]



Normalized sir model

ds Basic Reproductive Number
il Bsi — ps Ry

di . .

= Bsi = (y+ )i R B

dr . VA

P Y — pr

ds Equilibrium Points

— =p—PBsi—us

idh/r (1) m Disease-free point,

o= Bsi— (v + )i Eo = (1,0)

m Endemic equilibrium point,
E; = (s*,i*), where
s* = R%' and i* = 5(Ro — 1)



In general, for sir model we found V(s,i) = qi1(s — 1)? + g22i®
e(pt)

where g11 = € and gy = OFD)

Orbital derivative

Figure: p = 0.2, 3=0.5, v = 0.8, Ry = 0.5, g1 = 1.201 x 10~*, and
Goo = 5.666 x 107°



Dengue transmission model

d

C,;Ze = bBmhi(1 — me — m;) — (Om + ttm)Me
dm,-
dt
dh
CT; = pph — bBrmihs — pphs
dhe

i bprmihs — (6p + 1tn)he
dh;

i Ghe — hy

it nhe — (7n + 1)

= OmMe — fimm;

The disease-free point, Py = (0,0,1,0,0).



In general, we found

V/(me, mj, hs, he, hi) = quim2+ qaom?+qs3(hs —1)2+ qaa h2 + qss h?
where

qi1 — €
T
(Om + pim)
Apptim
b232
4im(On + fep)
b25,27
4(0n + pn)(vh + )
0;

q2 =
g3z < (g2 —€)+e¢

Gas < (g2 —€)+e¢

IN

qss5 (qas —€) + ¢

with e >0



Theorem
(Peet and Papachristodoulou, 2012) Suppose that f is a
polynomial of degree q and that system

x(t) = f(x(t)), x(0) = xo (2)
is exponentially stable on M with
(D] < Kllxolle™

where M is a bounded nonempty region of radius r. Then, there
exist a a, 3,7 > 0 and a sum of squares polynomial V(x) such
that for any x € M,

of x[|> < V(x)< BlIx]I?

VV(x) ()< =y llx]?



Further, the degree of V will be less than 2¢(N =1 where
k(L, A\, K) is any integer such that c¢(k) < K and

0o K2 k
c(k)® + “;;(K(TQ (14 c(k))(K + c(k)) < % (4)
c(k)? > W(l — (2K*)7%) (5)
where c(k) is defined as
N—1
c(k) =) (e™+ K(TL)*)'K*(TL)¥ (6)

Il
o

i

and N(L,\, K) is any integer such that NT > (log 2K?/2)) and
T < (1/2L) for some T and where L is a Lipschitz bound on f on
B4Kr-



Result: Lyapunov function for sir model

Moving the disease-free point Eg = (1,0) to the origin, the system
(1) becomes:

X1=p— B(1+x1)x2 — p(1l + x1) @)
%= B(1+x1)x2 — (1 +7)x
where x; =s—1, and x» = I.

The Lipschitz bound for this system is given by:

L= Sgg{ﬁ+u,ﬂ+1,5,ﬁ+(u+v)(1—RO)}



To find the converse Lyapunov function we construct the Picard
iteration:

(Pz)(t,x) = x + / £(0)ds = x

0
t

(P?z)(t,x) = x + / F((Pz)(s,x))ds = x
0

=x+ [ f(x)ds = x+ f(x)t
/



The converse

] [ -

o) [ §s§§$

H]



If § = i for the sir model, we get the SOS Lyapunov function

T

X1 1212 0 3L 0 X1
3 _ X2 0 122 0 3L X2
24L°V(x) = f(x1, x2) 3L 0 1 0] |Aba,x)
fz(Xl,XQ) 0 3L 0 1 f2(X1,X2)
=7"Qz
In this case,
3
2V/3L 0 57 (3)
Q=LTL, where L= 0 2v3L 0 2V3
0 0 i 0
0 0 0 :



And therefore we have the sum of squares decomposition:

2
24L3 V(Xl,X2) = <<2\/§L - 2\3/§,u> X1 — 2\3/§5X2 - 2\?)/§5X1X2>

. <(2\/§L - Sl - Ro)> %+ 2\3/§BX1X2>2

1
*2 (—pxi — Bxa — Bxixa)?

—i—% (Bxixa = (1 +7)(1 = Ro)xo)?



Orbital derivative
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Figure: 4t =0.2, 3=05,v=08, Ry=05 L=8+1=15



Threshold theorem (basic reproductive number, Rp)

If the average number of secondary infections caused by an average
infective is less than one, a disease will die out, while if it exceeds
one there will be an epidemic (Brauer and Castillo-Chavez, 2001).

R, | Maximum number of pecple (on average) that could be infected by one sick person
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Figure: Basic reproductive number for some infectious disease. Image
taken from https://goo.gl/vDc70u
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For sir model (1), the control parameters are: u, mortality rate.
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For sir model (1), the control parameters are: (3, transmission
probability:
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Example: Dengue model, Bello's case

dA A
512 M=y + 12)A
i 6( C) (4 11)

dM H;
dts = fymA — bﬁmﬁMs — (tom + pc)Ms
dM, H;
dte — bﬂmﬁ/\/ls —(Om + pom + 11c)Me
dM;
dt =0nM. — (,um + MC)MI
dH; M;
dt Hh bﬂh M s Hhs
dH,. M;
= —H, — H
g bph v s (9;, +Mh) e
dH;
=0pH. — H;
™ nHe — (vn =+ 11n)
dH,

— v Hi — upH
dt Yh Hhly



Example: Dengue model, Bello's case

R — bzﬁmﬁhehem . f’Ym oMC
O Om + pm) v+ 11) O + i) imM i (M + C(ym + 1))
b2 BimBnOnOm Mg

(Om + 1om)(vh + pr)(On + pr)ppm M

Control Parameters

Param. Meaning

b Biting rate
La Mortality rate in the aquatic phase
m Mortality rate in the adult phase

C Carrying capacity of the environment
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Figure: pic = 0,0.05,0.1, § = 65, v = 1.4, j1, = 0.12, b = 4,

m = 0.12, 6, = 0.58, f = 0.5, 8, = 0.7, C = 10000, v, = 1.2,
Bm = 0.75, B = 0.15, and pp = 0.0004, and the initial conditions
A(0) = 9000, M,(0) = 1199976, M.(0) = 18, M;(0) = 6,

Hs(0) = 321710, H.(0) = 18, H;(0) = 6, and H,(0) = 81501.



Forward Problem

Estimates of
model parameters

p=c1
B=ca
Y=a3

Quantitative model

ds
dt
dI
o = PSI= (vl
dR
dt

= uN — BSI — uS

=1 - uR

Predictions of data

Susceptible
- Infected
- Recovered




Inverse Problem

Observations of data

Quantitative model

ds

= = HN = BSI— S
dI

= BSI— (y+ W
d—R:'yI—uR

Estimates of
model parameters

p="7
g=7
y=7




Strategies to Solve Inverse Problem

Strategies

m Least squares

m Heuristic and Metaheuristic
algorithms

m Monte Carlo

m Least-Squares Gradient and
Hessian

Assumptions

m Independence in database
m Normal distribution

m All initial uncertainties in
the problem can be modeled
using Gaussian distributions
(Tarantola, 2005)



Uncertainty




Uncertainty in the dengue cases reported
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Uncertainty in experimental data




Probability approximation

m Has been widely studied and applied to practical engineering
problems.

m This method is based on probability distributions of the
parameters with uncertainty.

m Sufficient information on the uncertainty is not always
available or sometimes expensive for many practical problems.

m There are researches indicating that even a small deviation of

the probability distribution is likely to cause a large error of
the reliability analysis (Ben-Haim and Elishakoff, 2013).



Interval-valued approximation

m In the last two decades, the interval method in which interval
is employed to model the uncertainty has been attracting
more and more attentions (Moore, 1979; Braems et al., 2005).

m We only have to establish a bounds of the uncertainty of a
parameter

m This approximation can make the uncertainty analysis more
convenient and economical

m Interval method has been successfully applied to uncertainty
optimization problems (Jiang et al., 2008; Gallego-Posada and
Puerta-Yepes, 2017)
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Figure: Inverse analysis process for uncertainty inverse problems. Image
taken from (Jiang et al., 2008)



Goal

Without Uncertainty With Uncertainty
(:Tf:_ﬁs, %ﬁz_[ﬁlaﬂ2]5/
%2651_7/ %:[51752]5/—[71,72]/
G I = bl

where, where,

5(0) = % 5(0) = [0, So.]

I(O) = /() I(O) = [IOU IOz]
R(O) = Ro R(O) = [R017 ROz]



Example: Dengue model, Bello's case

dA A

7:5 6 177 Mﬁ myy Mo aps Haz A

T = 0002 (1= ) M (B ]+ D)
dM; H;

dt = [fla f2][’7m1a 'sz] A— [blv b2][5m1> ﬁmz] ﬁMs - [/~Lm17 Nmz] M
dM., H;

dr (b1, b2][Brm, » B, ] ﬁMs = ([Omys Omy] + [12my > omy]) Me
dM;

dt - [9"’1’9”72] M. — [:umw/imz] M;
dH, M;

i [12hys t1m,] H = [b1, b2][Bhy s Bh) 't [12hy» 11n,) Hs
dH, M;

g = b1, bl[Bh Bral S5 Hs = ([0ny, Ona] + [, 1ine]) He
dH;

dt = [9h17 9;,2] He — ([’th'yhz] + [N’hl’lu‘hz]) H;
dH,

e (Vs Vil Hi = [eny s p1m, | Hy



Example: Dengue model, Bello's case

Initial Conditions

A(0) = [Ao. Ag]
Ms(0) = [MSWM’]
Me(0) = [Me,, My,
M;(0) = [Mj,, M;]
Hs(0) = [Hsy, He,]
He(0) = [Hey, He,]
H;(0) = [Hiy. H;.]
Hr(0) = [Hiy, Hy
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Figure: On the right, interval-valued plot of the estimated Fourier series

model, and on the left, Real data vs Model output. Images taken from
(Gallego-Posada and Puerta-Yepes, 2017)



Results

We found robust Lyapunov functions to test the asymptotic
stability of disease-free equilibrium points in some models
simulating the transmission of mosquito-borne infectious diseases.

From the basic reproductive number Ry it is possible determined
how much should change the parameters of the model to satisfy
the condition Ry <'1
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